## Index

## - Symbols

$\alpha$ (alpha)
controlling across important hypotheses, 75
defined, 42,44
limiting chances for, 45
power affected by, 45
for sample-size calculation, 226
scaling sample size for, 373
spending strategy, 76
Type I error inflation, 74-75
usual level of, 46

* (asterisk)
multiplication indicated by, 21
powers indicated by (**), 22
$\beta$ (beta), 42, 44
[ ] (brackets), multiplication indicated by, 21
$\wedge$ (caret), powers indicated by, 22
\{ \} (curly braces), multiplication indicated by, 21
$=$ (equal sign), equations indicated by, 26
$\gamma$ (gamma) as skewness coefficient, 113
$\kappa$ (kappa)
for Cohen's Kappa, 202
for Pearson kurtosis index, 114
- (minus sign), 20-21
() (parentheses), multiplication indicated by, 21
$\pi$ (pi, lowercase) constant, defined, 19
$\Pi$ (pi, uppercase) as array symbol, 29
+ (plus sign), addition indicated by, 20
- (raised dot), multiplication indicated by, 21
/ (slash), division indicated by, 22
I। (vertical bars), absolute value indicated by, 25
1-dimensional arrays, 26-27
2-dimensional arrays, 27, 28
3D charts, avoiding, 105
- A
absence of harmful effects, 211-212
absolute values, indicating, 25 accuracy
defined, 38, 121
improving for measurements, 126-127
improving for sampling, 126
overall, 198, 281
precision versus, 38-39, 121
of sample statistic, 123
systematic errors affecting, 124-125
actuarial table. See life table
addition
mathematical operator for, 20
sums of array elements, 28-29
addresses, recording, 96
administrative details for a study, 70 adverse events, handling, 69
aims of a study, 61,62
Akaike's Information Criterion (AIC), 277, 295, 352
Algebra I For Dummies (Sterling), 17, 30
Algebra II For Dummies (Sterling), 17
alignment charts (nomograms), 59-60, 170-171, 208
alpha ( $\alpha$ )
controlling across important hypotheses, 75
defined, 42, 44
power affected by, 45
for sample-size calculation, 226
scaling sample size for, 373
setting a value for, 45
spending strategy, 76
Type I error inflation, 74-75
usual level of, 46
alternate hypothesis $\left(\mathrm{H}_{1 \text { or }} \mathrm{H}_{\text {Alt }}\right), 41$
alternative models, comparing, 297-298
analysis of covariance (ANCOVA), 158, 160-161
analysis of variance (ANOVA)
basic idea of, 164-165
for data grouped on different variables, 158
for dissimilar standard deviations, 158
interpreting output of, 166-168
one-way, 157
one-way, three-level, 157
one-way, two-level, 157
post-hoc tests, 165-166
running, 166
on summary data, 168-169
for three or more groups, 157
three-way, 158
variance table, 166-167
Welch unequal-variance, 158
analytical populations, 67, 69
analyzing your data. See data analysis
and rule for probability, 32-33
animal studies, 79
antilogarithm (antilog), 24
apps, 48,58
arithmetic mean, 107
arrays, 26-29
assay sensitivity, 214
asterisk (*)
multiplication indicated by, 21
powers indicated by (**), 22
attrition, sample-size estimation allowing for, 374
average value, 41. See also comparing averages


## - B

background information for a study, 68
balanced confidence interval, 135
bar charts, 105, 118-119. See also histograms
baseline hazard function, 342
baseline survival function, 342-344
beta ( $\beta$ ), 42,44
between-group difference, 200-201
bimodal distribution, 106, 108
binary logarithms, 23
binary variables, 189, 193-194, 254
binomial distribution, 37, 362
bio-creep, 218
bioequivalence, 211
bioequivalence studies (BE), 88, 212, 213, 214, 215
blinding, 65, 69
Bonferroni adjustment, 75
Bonferroni test, 165
Box plots, 119-120
box-and-whiskers (B\&W) charts, 119-120
Box-Cox transformation, 117-118
brackets ([ ]), multiplication indicated by, 21

## - Co

calculators
cross-tabulated data for, 174
for error propagation, 150-151
for fourfold tables, 190
for power, 48
printed, 59-60
scientific and programmable, 57
web-based, 48, 58-59, 150-151, 190
calibrating instruments, 126-127
caret ( $\wedge$ ), powers indicated by, 22
Case Report Form (CRF), 63, 72
case-sensitivity, 20, 25
categorical data
coding categories carefully, 96-97
in data dictionary, 102
graphing, 105
multi-level categories, 97-98
odds ratios for predictors, 286-287
recording, 96-98
summarizing, 104
tabulating to check errors, 101
categorical variables
cross-tabulation by, 104
defined, 35
for multiple regression, 254-255
recoding as numerical, 255-256
reference level, 255
cells and tissues, studies on, 79
censored data. See also estimating
censored data
example, 315-316
reasons for, 315
recording censoring information, 327-328
techniques for handling, 316-317
techniques not applicable to, 317-318
Centers for Disease Control, 56
centiles, 112, 329
central limit theorem (CLT), 127, 137
central tendency of data, 107-110
certification, 72
charts. See graphs and charts; tables
chemical studies, 79
chi-square distribution, 366-367
chi-square test. See Pearson chi-square test
CI. See confidence interval
CL. See confidence interval (CI)
clinical research. See also drug
development
analyzing your data, 73-76
collecting and validating data, 72-73
conducting a study, 70-73
data collection and validation, 72-73
designing a study, 61-70
as focus of this book, 1,11
protecting your subjects, 70-72
validating data, 72-73
cloud-based software, 59
clustered events, Poisson regression with, 298
coding data
categorical variables as numerical, 255-256
for gender, 96-97
for missing values, 98,99
for multi-level categories, 97-98
numerical data, 99
coefficient of determination, 247
coefficient of variation, 111
Cohen's Kappa (к), 202
collecting data, 72-73
collinearity, 263-264, 285
common logarithms, 23
comparing averages
for data grouped on different variables, 158
for within-group changes between groups, 160-161
for matched sets, 159-160
mean to hypothesized value, 156
nuisance variable adjustment for, 158
situations requiring, 155-156
for three or more groups, 157
for two groups, 156-157
comparing survival between groups.
See also survival regression
in complicated situations, 337
Kaplan-Meier method for, 330
life-table method for, 330
log-rank test for, 332-336
sample-size estimation, 337-338, 371-372
complete separation problem, 287-288
computer software. See also software
case-level data with, 174
case-sensitivity of, 25
commercial, 52-55
demo versions, 52
development of, 51-52
free, 55-57
indicating factorials in, 24
for logistic regression, 274-275
for log-rank test, 333
for multiple regression, 254-258
for power calculation, 48
spreadsheet programs, 54
concordance, 352
confidence interval (CI)
around means, 137-139, 142
around proportions, 139
around regression coefficients, 141
assessing significance using, 141-142
balanced versus unbalanced, 135
calculating for rate ratio, 207, 208
for Cohen's Kappa, 202
described, 12, 40, 134
for equivalence and noninferiority, 215-217
formulas for large samples, 136-137
keeping as narrow as possible, 135
no-effect values, 141
normal-based, multipliers for, 137
one-sided, 136
p value compared to, 142
for precision of incidence rate, 205-206
as range of values, 134
standard error versus, 134
upper and lower limits of, 195
confidence limit (CL). See confidence interval (CI)
confidentiality, 70
confounders (nuisance variables), 158, 187-188
confounding, 65
constants. See also specific types
explicit versus symbolic representation of, 19
in linear functions, 231
standard error multiplied or divided by, 147
standard error not changed by adding or subtracting, 146
continuous variables, 35
co-primary endpoints, 85
correlation coefficient
described, 193
Pearson, 222-226
straight-line regression, 247
tetrachoric, 193-194
correlation coefficient analysis
precision of $r$ value, 224-225
r significantly different from zero, 223-224
regression analysis versus, 239
sample size required for test, 226
significant difference in two r values, 225
correlation, defined, 221, 222
covariates for survival, 330
Cox PH regression, 341-345
CRF (Case Report Form), 63, 72
crossover structure of a study, 64
cross-tabulation. See also fourfold tables
for comparing proportions, 174
described, 173
Fisher Exact test, 181-185
fourfold tables, 173, 174, 189-202
Kendall test, 185-187
Mantel-Haenszel chi-square test, 187-188
marginal totals or marginals, 173
Pearson chi-square test, 174-181, 183-185, 186
by two categorical variables, 104
curly braces ( $\{$ \}), multiplication indicated by, 21

- D
data
collecting, 72-73
file describing, 102
interval, 94
levels of measurement, 94-95
numerical versus non-numerical, 4
ordinal, 94
privacy and confidentiality of, 70
ratio, 94
recording, 63, 95-101
validating, 73,101
data analysis
handling missing data, 74
handling multiplicity, 74-75
interim analyses, 76
selecting analyses, 66-67
Statistical Analysis Plan (SAP), 69
data dictionary, 102
data safety monitoring board or committee
(DSMB or DSMC), 72
dates and times, 99-101, 102
deciles, 112
degrees of freedom (df), 162, 179
demo versions of software, 52
designing a clinical study
aims, objectives, hypotheses, and
variables, 61-63
analytical populations, 67, 69
parallel versus crossover structure, 64
protocol components, 68-70
randomization, 64-66
sample size, 67-68
sample subject criteria, 63-64
selecting analyses, 66-67
diagnostic procedures, evaluating, 197-199
dichotomous (binary) variables,
189, 193-194, 254
difference table, 176-177
dispersion, 110-112
distributions
bimodal, 106, 108
binomial, 37, 362
central tendency of, 107-110
characteristics of, 106
chi-square, 366-367
for common test statistics, 359
dispersion of, 110-112
equations for, 37
exponential, 363
Fisher F, 367-368
kurtosis of, 113-114
log-normal, 37, 116-117, 157, 361
normal, 37, 106, 360-361
normalizing, 117-118
parametric functions for, 49
pointy-topped, 106, 114
Poisson, 37, 298, 362-363
population, 108
for random fluctuations in data, 359
representation of, 37
skewed, 106, 117-118
skewness of, 113
for statistical tests, 38
Student t distribution, 364-365
Student t test assumption about, 157
summary statistics showing, 103
uniform, 360
Weibull, 364
division, mathematical operators for, 22
dose-finding trials, 82-84
dose-limiting toxicities (DLTs), 80, 81
dose-response behavior, 83-84
dot, raised ( $\cdot$ ), multiplication indicated by, 21
double-blinding, 65
double-indexing for arrays, 27
drug development. See also clinical research
bioequivalence studies, 88
pharmacokinetics/pharmacodynamics studies, 86-88
Phase I: Maximum tolerated dose, 80-82
Phase II: Safety and efficacy, 82-84
Phase III: Proving the drug works, 84-85
Phase IV: Monitoring the marketed drug, 85-86
preclinical studies, 78-79
reasons for looking at, 77
regulatory agencies, 80
steps in, 77-78
thorough QT trials, 88-90
DSMB or DSMC (data safety monitoring board or committee), 72
dummy variables, 255-256
Dunnett's test, 166
Dupont, W. D. (software developer), 56


## - E

$e$ constant, 2, 19, 22-23
effect size
for bioequivalence studies, 213
power affected by, 45, 46-47
for QT safety studies, 213
for sample-size calculation, 226
sample size relationship to, 47-48, 170-171
for therapeutic noninferiority studies, 213
effective doses on logistic curve, 280
effectiveness, 78
efficacy
co-primary endpoints, 85
defined, 78
drug testing for, 82-84
effectiveness versus, 78
noninferiority testing precaution, 217
popular usage of, 78
efficacy endpoints, 83
efficacy objectives, 62
elements of arrays, 28-29
environmental factors in precision, 125
Epi Info software, 56
epidemiology, 203
equal sign (=), equations indicated by, 26
equations, 17, 26. See also formulas
equivalence testing, 13, 214-217
equivalent functions, 305-306
error propagation
applying simple rules consecutively, 150
defined, 144
formulas for simple expressions, 146-149
online calculators for, 150-151
simulating, 152
error-checking for data, 73, 101
estimating censored data
interpreting survival curves, 328
Kaplan-Meier method for, 324-325
life-table method for, 318-324
recording censoring information correctly, 327-328
recording survival times correctly, 327
event counts or rates calculating observed and expected counts, 175-177
comparing two counts with identical exposure, 209
comparing two rates, 107-109
confidence interval around, 140
Poisson regression for, 291-298
standard error of, 130-131
ex vivo studies, 79
Excel software
data-recording cautions, 97, 99
error-checking techniques, 101
PopTools add-in for, 56
randomization using, 66
uses for biostatistics, 54
excess kurtosis, 114
exclusion criteria, 64, 126
explicit representation of constants, 19
exploratory objectives, 62
exponential distribution, 363
exponentiation, 22-23, 30 exposure, 204
expressions, 17. See also formulas

## - $F$

F statistic, 247-248, 260
$F$ test for equal variances, 164
factorials, 24
false discovery rate (FDR), 75
false negative results, 197-198, 282-283
false positive results, 197-198, 282-283
FDA Adverse Event Reporting System
(FAERS), 86
feedback to the author, 1
Fisher Exact test, 181-185
Fisher F distribution, 367-368
Fisher, R. A. (statistician), 181
Fisher z transformation, 224, 225
Fisher's LSD test, 166
fitted logistic formula, 278-280
Food and Drug Administration (FDA),
$71,80,84-85,86$
formulas
arrays in, 28
defined, 17
hierarchy rules for, 25-26
typeset versus plain text format, 18
usage in this book, 17
fourfold tables. See also cross-tabulation
for assessing risk factors, 194-197
for comparing proportions, 174
conventions in this book for, 190-191
defined, 173, 189
for evaluating diagnostic procedures, 197-199
Fisher Exact test, 181-185
fundamentals of, 190-191
for inter- and intra-rater reliability, 201-202
for investigating treatments, 199-201
Mantel-Haenszel chi-square test, 187-188
Pearson chi-square test, 174-181, 183-185, 186
sample statistic from, 190
sampling strategies for, 191-192
scenarios leading to, 192
for tetrachoric correlation coefficient, 193-194
free software, 48, 55-59
free-text data, recording, 95
frequency bar charts, 105
frequency distributions. See distributions
Friedman tests, 158, 159
functions
defined, 25
equivalent, 305-306
linear, 231
nonlinear, 231, 299
parametric distribution, 49
S-shaped, for logistic regression, 270-273
using in formulas, 25

## - G

Galton, Francis (statistician), 222
gamma ( $\gamma$ ) as skewness coefficient, 113 gender, 2, 96-97
generalized linear model (GLM), 292-293
Generalized Savage's test. See log-rank test geometric mean (GM), formulas for, 109-110 gestational age, recording, 99
goals of a study, 61, 62 good clinical practice (GCP), 72
good doses, defined, 84
goodness-of-fit indicators, 247-248, 351-352
G*Power software, 57
GraphPad InStat software, 54
GraphPad Prism software, 53-54
graphs and charts. See also scatter plots;
tables
bar charts, 105, 118-119
box-and-whiskers charts, 119-120
of categorical data, 105
hazard rates and survival probabilities, 324
histograms, 35, 116-118
logistic regression data, 269-270
nomograms (alignment charts), 59-60, 170-171, 208
of numerical data, 115-120
pie charts, 105
of probability distributions, 37
Receiver Operator Characteristics, 283-285
of relationships between numerical variables, 120
residuals versus fitted, 242-243, 249
S-shaped function for logistic regression, 270-273
3D charts, avoiding, 105

## - H

$\mathrm{H}_{0}$ (null hypothesis), 41, 43-45
$\mathrm{H}_{1 \text { or }} \mathrm{H}_{\text {alt }}$ (alternate hypothesis), 41
hazard rate
defined, 316
estimating censored data, 318-328
graphing from a life table, 324
interpreting life-table output, 323
hazard ratios, 345, 350-351
hierarchical testing strategy, 75
hierarchy rules for formulas, 25-26
histograms, 35, 116-118
historical control, comparing results to, 156
Hood, Greg (ecologist), 56
Hosmer-Lemeshow (H-L) test, 277
human error, 124
hypotheses, identifying, 62
hypothesis testing, 41-43

## -1

icons in this book, explained, 5-6
identification (ID) numbers, recording, 95-96
imprecision. See precision
imputing values, 74, 317
in silico studies, 79
in vitro studies, 79
in vivo studies, 79
inaccuracy. See accuracy
incidence, 204
incidence rate (R), 204-207
inclusion criteria, 64, 126, 128
index of an array, 27
Informed Consent Form (ICF), 71-72
inner mean, 109
Institutional Review Boards (IRBs), 71, 72, 76
intent-to-treat (ITT) population, 67
inter- and intra-rater reliability, 201-202
intercept, 231, 244
interim analyses, 76
inter-quartile range (IQR), 112
interval data, 94, 100-101, 314
interval of uncertainty (IOU), 145

## - K

Kaplan-Meier (K-M) method, 324-328
kappa (к)
for Cohen's Kappa, 202
for Pearson kurtosis index, 114
Kendall test, 185-187
Krukal-Wallis test, 158
kurtosis, 113-114

- L

Last Observation Carried Forward (LOCF), 74
LazStats software, 55
least-squares regression, 291-292. See also nonlinear regression
leptokurtic distribution, 114
lethal doses on logistic curve, 280

## 382 Biostatistics For Dummies

life table
basic idea of, 318-319
creating, 319-323
graphing hazard rates and survival probabilities from, 324
guidelines for, 326-328
interpreting, 319-323
Likert agreement scale, 94, 97
linear, defined, 252
linear functions, 231
linear regression. See multiple regression; straight-line regression
logarithms, 23-24
logistic regression
assessing model adequacy, 276-277
calculations for, 273
collinearity in, 285
complete separation problem, 287-288
described, 14, 230
fitted logistic formula, 278-280
gathering and graphing data for, 268-270
interpreting output of, 275-285
issues to beware of, 285-288
with multiple predictors, 274
for nonlogistic data, avoiding, 285
odds ratios for categorical predictors, 286-287
odds ratios for numerical predictors, 286
Receiver Operator Characteristics curve, 283-285
reverse-coding of outcome variable, 286
running software for, 274-275
sample-size estimation, 288-289
S-shaped function for data, 270-273 steps for, 274-275
summary information about variables, 276
table of regression coefficients, 278
typical categorical outcomes of, 267
typical output of, 275, 276
uses for, 267-268
for yes or no predictions, 280-285
log-normal distribution, 37, 116-117, 361
log-normal transformation, 117
log-rank test
assumptions about data in, 336
basic idea of, 333
calculations for, 334-336
data for, 332
extended versions of, 331
limitations of, 340
other names for, 331
running on software, 333
LOWESS curve-fitting, 14
LOWESS regression, 306-310

## - M

Mann-Whitney (M-W) test, 157
Mantel-Cox test. See log-rank test
Mantel-Haenszel chi-square test, 187-188
Mantel-Haenszel test for survival data. See log-rank test
margin of error, 137, 144
marginal totals or marginals, 173, 176
masking (blinding), 65
matched numbers, comparing, 159-160
matched-pair data, comparing, 159
mathematical operations, 20-25
matrices, 28. See also arrays
maximum tolerated dose (MTD), 81-82
mean
arithmetic, 107
comparing to hypothesized value, 156
confidence interval around, 137-139, 142
geometric, 109-110
inner, 109
root-mean-square, 110
of sample versus population, 36
standard error of, 129-130
measurement
calibrating instruments for, 126-127
imprecision sources in, 125
improving accuracy of, 126-127
improving precision of, 128
indirect, 143
as kind of sampling, 123-124
systematic errors in, 124
median, 107-108
metadata, 102
Miller, Bill (software developer), 55
Minitab software, 55
minus sign (-), 20-21
missing data
censored data versus, 317-318
coding, 98, 99
in data dictionary, 102
dates, 100
methods for handling, 74
mixed-model repeated measures
(MMRM), 74
mobile devices, software for, 58
mode, sample versus population, 108
model building problem, 264
Monte-Carlo analysis, 152
MTD (maximum tolerated dose), 81-82
multicollinearity, 263-264, 285
multiple regression
basic idea of, 251-252
categorical variables for, 254-256
collinearity in, 263-264
dummy variables for, 255-256
fit of model to data, 262
interpreting output of, 258-262
matrix notation for, 252
for model building problem, 264
optional output for, 260
recoding categorical variables as
numerical, 255-256
reference level for, 255
running software for, 254-258
sample-size estimation, 265
scatter plots for, 256-258
solving simultaneous equations for, 253
steps for, 258
suitability of data for, 261
synergistic effect in, 263
terms and notation used in, 252-253
typical output of, 259-260
uses for, 253
multiplication
mathematical operators for, 21
products of array elements, 28-29
standard error for products, 148
multiplicity, 74-75
multivariable linear regression, 14
multivariable regression, 230
multivariate regression, 229
M-W (Mann-Whitney) test, 157

## - N

names, recording, 96
National Institutes of Health (NIH), 71
natural logarithms, 23, 24
negative numbers, indicating, 21
negative predictive value (NPV), 199
NNT (number needed to treat), 201
nominal variables, 94
nomograms (alignment charts), 59-60, 170-171, 208
noninferiority creep, 218
noninferiority testing, 13, 214-218
nonlinear functions, 231, 299
nonlinear least-squares regression, 14
nonlinear regression
drug research example, 300-302
interpreting output of, 304-305
as least-squares regression, 291
nonlinear functions, 299
other regressions versus, 299-300
running, 302-303
using equivalent functions to fit parameters, 305-306
nonlinear trends, Poisson regression for, 296-297
nonparametric regression, 306
nonparametric tests, 49, 50, 169
nonsuperiority, confidence intervals for, 217
normal distribution, $37,106,157,360-361$
normality assumption, 157
not rule for probability, 32
NPV (negative predictive value), 199
nuisance variables, 158, 187-188
null hypothesis $\left(\mathrm{H}_{0}\right), 41,43-45$
null model, 248
number needed to treat (NNT), 201
numerical data
in data dictionary, 102
in Excel, 99
graphing, 115-120
grouping in intervals, avoiding, 98
recording, 98-99
structuring summaries in tables, 114-115
summarizing, 106-114
numerical variables, $98-99,255-256$

## - 0

objectives of a study, 62
odds, 33-34, 195
odds ratio (OR), 188, 195-197, 286-287
Office for Human Research Protections
(OHRP), 71
one-dimensional arrays, 26-27
one-sided confidence interval, 136
OpenStat software, 55
operator variability, 125
or rule for probability, 33
order of precedence for formulas, 25-26
ordinal data, 94, 185-187. See also
categorical data
ordinary, defined, 252
ordinary multiple linear regression. See
multiple regression
ordinary regression, 230
outliers, 111-112, 249
overall accuracy, 198, 281

## - $p$

$p$ value
chi-square test for determining, 178-179
confidence interval compared to, 142
defined, 42
Fisher Exact test for, 181-183
logistic regression, 277
multiple regression, 260
significance in reference to, 2,190
straight-line regression, 246
survival regression, 350
as a test result, 43
paper calculators, 59-60
parallel structure of a study, 64
parameter error-correlations matrix, 260
parametric distribution functions, 49 parametric tests, 49, 50
parentheses [()], multiplication indicated by, 21
Pearson chi-square test
basic formulas for, 180
calculating observed and expected counts, 175-177
cell naming and notation, 179
degrees of freedom for, 179
determining the $p$ value, $178-179$
development of, 174
Kendall test versus, 186
power and sample size calculation for, 183-185
pros and cons of, 180
summarizing and combining scaled differences, 177-178
Yates continuity correction for, 181, 184
Pearson correlation coefficient
described, 222
precision of $r$ value, 224-225
r significantly different from zero, 223-224
sample size required for test, 226
significant difference in two r values, 225
in straight-line regression, 247
for straight-line relationships only, 223
Pearson, Karl (statistician), 174, 222
Pearson kurtosis index, 114
percentages, 32, 104. See also proportions
per-protocol (PP) population, 67
person-time data. See event counts or rates pharmacokinetics/pharmacodynamics
(PK/PD) studies, 86-88, 300-302
physical factors in precision, 125
pi, lowercase ( $\pi$ ) constant, defined, 19
pi, uppercase ( $\Pi$ ) as array symbol, 29
pie charts, 105
pivotal Phase III studies, 85
placebo effect, 65
plain text format
absolute values in, 25
arrays in, 27, 29
division in, 22
logarithms in, 23
multiplication in, 21
powers in, 22
roots in, 23
scientific notation in, 30
typeset format compared to, 18
platykurtic distribution, 114
Plummer, W. D. (software developer), 56
plus sign (+), addition indicated by, 20
pointy-topped distribution, 106, 114
Poisson distribution, 37, 298, 362-363

Poisson regression
with clustered events, 298
for comparing alternative models, 297-298
described, 14, 230
interpreting output of, 295-296
for nonlinear trends, 296-297
running, 293-294
with unequal observation intervals, 298
PopTools software, 56
population parameter, 122
populations
analytical, 67, 69
as confidence interval focus, 134
defined, 36
mode for distribution of, 108
positive control, 214, 217
positive predictive value (PPV), 199
post-hoc tests for ANOVA, 165-166
power of a test
calculating for chi-square and Fisher
Exact tests, 183-185
defined, 42
effect size relationship to, 45, 46-48
factors affecting, 45
methods for calculating, 48
for sample-size calculation, 226
sample size relationship to, 45, 46, 47-48
scaling sample size for, 372
powers, 22-23, 149
PP (per-protocol) population, 67
precedence order for formulas, 25-26
precision
accuracy versus, 38-39, 121
defined, 38, 121
improving for measurements, 128
improving for sampling, 127-128
of incidence rate, 205-206
measurement imprecision, 125
of numerical data, 98-99
of $r$ value, 224-225
random errors affecting, 125
of sample statistic, 123
sample-size estimation for, 132
sampling imprecision, 125
preclinical studies, 78-79
predictors, 230, 274, 286-287
prevalence, 204, 205
primary objectives, 62
printed calculators, 59-60
privacy considerations, 70
probability
and rule for, 32-33
defined, 31
not rule for, 32
numbers between 0 and 1 for, 32
odds compared to, 33-34
or rule for, 33
percentages for, 32
probability distributions. See distributions
procedural descriptions, 69
product description for a study, 69
programmable calculators, 57
programs. See software
propagation of errors. See error propagation
proportional-hazards regression, 347-348, 353-356
proportions
confidence interval around, 139
fourfold table for comparing, 174
between-group difference, 200-201
prevalence, 204, 205
standard error of, 130
protocol components of a study, 68-70
PS software, 56-57
pseudo R-square values, 277

## - 0

QT interval, 89
QT safety studies, 212, 213, 214, 215
QT/QTc (thorough QT) trials, 88-90
quartiles, 112
quintiles, 112

## - R

r. See Pearson correlation coefficient

R (incidence rate), 204-207
R software, 56, 295
raised $\operatorname{dot}(\cdot)$, multiplication indicated by, 21
randomization
advantages of, 65
of data versus numbers, 34
imprecision from errors in, 125
prediction not possible with, 35
in study protocol, 69
using in a study, 64-66
randomized controlled trials (RCTs), 64-66
range of a set of values, 111-112
rate ratio (RR), 206-207, 208
ratio data, 94
rationale for a study, 68
ratios, standard error for, 148
Receiver Operator Characteristics (ROC)
curve, 283-285
recording data
Case Report Form (CRF) for, 63
categorical data, 96-98
censoring information, 327-328
dates and times, 99-101
in Excel, 97, 99
free-text data, 95
ID numbers, 95-96
names and addresses, 96
numerical data, 98-99
simple method for, 63
survival times, 327
reference level for multiple regression, 255
regression analysis. See also specific types
correlation coefficient analysis versus, 239
generalized linear model, 292-293
linear versus nonlinear functions for, 231
logistic regression, 14, 230, 267-289
LOWESS regression, 306-310
multiple regression, 251-265
nonlinear regression, 298-306
number of outcomes, 229
number of predictors, 230
outcome variable's type of data, 230-231
Poisson regression, 14, 230, 291-298
purpose of, 227-228
software needed for calculations, 236
straight-line regression, 233-250
survival regression, 339-356
terms and notation used in, 228-229
types of, 14, 229-232
univariable versus multivariable, 230
univariate versus multivariate, 229
regression coefficients
confidence interval around, 141
standard error of, 131-132, 244-245, 350
survival regression, 350
regression, defined, 221
regression table
importance of, 243
for logistic regression, 278
for multiple regression, 260
for straight-line regression, 244-246
regulatory agencies, 71, 80
relative risk (RR), 194-195
Remember icon, 5
repeated-measures analysis of variance
(RM-ANOVA), 159-160
residual standard error, 242, 260
residuals, 241-243, 259, 260
residuals versus fitted graph, 242-243, 249
risk evaluation mitigation strategy (REMS), 86
risk factor assessment
odds ratio, 195-197
relative risk (RR), 194-195
risk ratio, assessing, 194-195
ROC (Receiver Operator Characteristics)
curve, 283-285
root-mean-square (RMS), 110
root-mean-square (RMS) error, 242
roots, 23, 149
RR (rate ratio), 206-207
RR (relative risk), 194-195
Rumsey, Deborah J. (Statistics For Dummies), 3
-S
s. See standard deviation

S Plus software, 55
safety considerations
certification in human subjects protection, 72
indicators for drugs, 83
Informed Consent Form, 71-72
Institutional Review Boards, 71
monitoring board or committee, 72
Phase II in drug testing, 82-84
protecting your subjects, 70-72
regulatory agencies, 71
safety objective, 62
safety population, 67, 69
in study protocol, 69
sample
defined, 36
determining suitable subjects, 63-64
exclusion criteria, 64, 126
fourfold table strategies, 191-192
imprecision sources in, 125
improving accuracy of, 126
improving precision of, 127-128
inaccuracy in, 124
inclusion criteria, 64, 126, 128
measurement as, 123-124
perfection not possible for, 36
randomization of, 64-66
selection bias, 65
as standard error focus, 134
sample size
effect size relationship to, 47-48, 170-171
power affected by, 45, 46
standard error affected by, 127
in study protocol, 69
sample statistic, 122, 123, 190
sample-size estimation
to achieve precision desired, 132
adjusting for unequal group sizes, 373-374
allowing for attrition, 374
Cheat Sheet for, 48
for clinical study, 67-68
for comparing averages, 169-171
for comparing means, 370
for comparing paired values, 370
for comparing proportions, 371
for comparing survival, 337-338, 371-372
for correlation test, 226
for Fisher Exact test, 183-185
free software for, 56-57
importance of, 15
for logistic regression, 288-289
for multiple regression, 265
nomograms for, 170-171
for noninferiority testing, 218
for Pearson chi-square test, 183-185
for rate comparisons, 209-210
scaling from 0.05 to another alpha level, 373
scaling from $80 \%$ to another power, 372
for significant correlation, 371
simple formulas for, 169
software for, 170
for straight-line regression, 249-250
for survival regression, 356
web-based calculators for, 170
SAP (Statistical Analysis Plan), 69
SAS software, 52-53
scatter plots
LOWESS regression, 306-310
multiple regression, 256-258, 260
straight-line regression, 234, 235, 238-239
Scheffe's test, 166
scientific calculators, 57
scientific notation, 30
Score Test. See log-rank test
SD or sd. See standard deviation
SE. See standard error
secondary objectives, 62
selection bias, 65
sensitivity of a test, 198, 282
significance
defined, 42
with multicollinearity, 263-264, 285
in reference to p value, 2,190
statistical, 43
testing for, 42-43
significance tests, 42, 214-215
simple linear regression. See straight-line regression
simulating error propagation, 152
single-blinding, 65
skewed distribution, 106, 113, 117-118
skewness coefficients, 113
slash (/), division indicated by, 22
slope, 131-132, 244
smoothing fraction for LOWESS, 309-310
software. See also specific types
apps, 48, 58
case-level data with, 174
case-sensitivity of, 25
cloud-based systems, 59
computer, 48, 51-57
field-length limitations of, 95
indicating factorials in, 24
for logistic regression, 274-275
software (continued)
for log-rank test, 333
for multiple regression, 254-258
for power calculation, 48
required for regression, 236
for sample-size estimation, 170
sources of, 10
web-based, 48, 58-59
specificity of a test, 198-199, 282
sphericity, RM-ANOVA issue with, 160
spreadsheet programs, 54, 101. See also
Excel software
SPSS software, 53
square-root transformation, 117
standard deviation (SD, sd, or s)
formula for, 110
of Poisson distribution, 298
of population distributions, 111
of sample versus population, 36
sensitivity to outliers, 111
Student t test assumption about, 157
standard error (SE). See also error propagation
of average of $N$ equally precise numbers, 148
confidence interval versus, 134
described, 12, 40, 125
of differences, 177
estimating for single-variable expressions, 144-145
of event counts and rates, 130-131
of means, 129-130
multiplying or dividing by a constant, 147
not changed by adding or subtracting a constant, 146
in Poisson regression, 295
for powers and roots, 149
for products and ratios, 148
of proportions, 130
of regression coefficients, 131-132, 244-245, 350
of residuals, 242, 260
sample size affecting, 127
sample-size estimation using, 132
Student t test calculation of, 162
when adding or subtracting two measurements, 147

Stata software, 55
statistic, defined, 42
Statistical Analysis Plan (SAP), 69
statistical decision theory, 12-14, 40-41
statistical estimation theory, 12, 38-40
statistical inference, 38
Statistics For Dummies (Rumsey), 3
Sterling, Mary Jane
Algebra I For Dummies, 17, 30
Algebra II For Dummies, 17
straight-line regression
conditions suitable for, 234-235
correlation coefficient, 247
error sources in, 249
example, 237-239
F statistic, 247-248
formulas for, 235-236
gathering data for, 237-238
goodness-of-fit indicators, 247-248
intercept, 244
interpreting output of, 239-248
other names for, 233
p value, 246
prediction formula, 248
regression table for, 243-246
residuals from, 241-243
sample-size estimation for, 249-250
scatter plot creation, 238-239
slope, 244
software needed for calculations, 236
standard error of coefficients, 244-245
steps for, 237
Student t value, 246
t value, 246
typical output of, 240
variables for, 233
stratification, 187-188
stratified Cochran-Mantel-Haenszel test. See log-rank test
Student t distribution, 364-365
Student t tests
assumptions about data in, 157
basic idea of, 161-162
calculation of difference, standard error, and degrees of freedom by, 162
for comparing matched pairs, 159
for comparing mean to hypothesized value, 156
for comparing two groups, 157
F test for equal variances, 164
interpreting output of, 163-164
for matched-pair data, 159
one-group, 156, 162
paired, 159, 163
running, 162-163
on summary data, 168-169
unpaired or independent sample, 157, 163
Welch, 157, 162-163
subject-to-subject variability, 125
subtraction, 20
summary statistics
for categorical data, 104
defined, 103
for numerical data, 106-114
for residuals, 241-242
structuring in tables, 114-115
Student $t$ and ANOVA tests with, 168-169
superscripting, powers indicated by, 22
survival analysis
applicability to other events, $313,331,339$
comparing survival times, 330, 331-338
custom prognosis chart, 330
determining factors affecting survival, 330
estimating censored data, 318-328
five-year (or other time) survival rate, 329
median (or centile) survival time, 329
survival regression, 231, 339-356
survival data. See also estimating censored data
censoring of, 315-318
estimating censored data, 318-328
interpreting survival curves, 328
as interval data, 314
non-normality of, 314-315
overview, 14-15
techniques not applicable to, 314-315, 317-318
survival rate
defined, 316
estimating censored data, 318-328
five-year (or other time), 329
graphing from a life table, 324
interpreting life-table output, 323
survival regression
baseline hazard function, 342
baseline survival function, 342
with censored data, 341
concepts behind, 340-345
constructing prognosis curves, 353-356
Cox PH regression, 341-345
described, 231
goodness-of-fit indicators, 351-352
hazard ratios, 345, 350-351
interpreting output of, 347-352
linear combination for, 340-341
with nonparametric versus parametric survival curves, 341
proportional-hazards regression, 347-348, 353-356
running, 346-347
sample-size estimation, 356
table regression coefficients, 350
testing validity of assumptions, 349
uses for, 340
survival times
comparing between groups, 330, 331-337
median (or centile), 329
recording correctly, 327
symbolic representation of constants, 19
synergistic effect, 263
systematic errors, 124-125

## - T

t value, 246, 260
tables. See also fourfold tables; graphs and charts
life table, 318-328
for power calculation, 48
of probability distributions, 37
of regression coefficients, 60, 243-246, 278
structuring numerical summaries in, 114-115
Technical Stuff icon, 2, 5
terachoric correlation coefficient, 193-194
test statistic, 42-43
tetrachoric correlation coefficient, 193-194
theoretical molecular studies, 79
therapeutic noninferiority, 211
therapeutic noninferiority studies, 212, 213, 214, 215
therapeutic range for a drug, 84
thorough QT (TQT or QT/QTc) trials, 88-90
3D charts, avoiding, 105
tied values, 50
times and dates, 99-101, 102
time-to-event data. See survival data
Tip icon, 6
title of a study, 68
Torsades de Points (TdP), 88
trimmed mean, 109
Tukey-Kramer test, 166
Tukey's HSD test, 166
two-dimensional arrays, 27, 28
two-way tables. See cross-tabulation
Type I error, 42, 44, 45, 74-75
Type II error, 42,44

## - U

unary operator, 21
unbalanced confidence interval, 135
unequal observation intervals, Poisson regression with, 298
unequal-variance $t$ (Welch $t$ ) test, 157, 163-164
uniform distribution, 360
univariable regression, 230
univariate regression, 229

## - U

validating data, 73, 101
variables
case of, 20
categorical, 35, 104, 254-256
continuous, 35
in data dictionary, 102
for dates and times, 99-100
defined, in different fields, 19-20
free-text, 95
identifying for a study, 63
for names and addresses, 96
nominal, 94
numerical, 98-99, 255-256
sorting values to check errors, 101
unary operator for, 21
variance, 111
variance table from ANOVA, 166-167
vectors, 27. See also arrays
vertical bars (|l), absolute value indicated by, 25

- W

Warning! icon, 6
web resources, 59
web-based software calculators for error propagation, 150-151
calculators for power, 48
defined, 58
for fourfold tables, 190
for sample-size estimation, 170
statistics packages, 59
Weibull distribution, 364
Welch t test, 157, 163-164
Welch unequal-variance ANOVA, 158
Wilcoxon Signed-Ranks (WSR) test, 156, 159
Wilcoxon Sum-of-Ranks (WSOR) test, 157
withdrawal criteria, 64
within-subject variability, 125

## - Y

Yates continuity correction, 181, 184
yes or no predictions, 280-285

- Z
zero point, 94

